27,126 research outputs found

    Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II

    Full text link
    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.Comment: 10 pages, 5 figures, to be published in Proc. SPIE 8443, "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    High temperature static strain gage development contract, tasks 1 and 2

    Get PDF
    Results are presented for the first two tasks to develop resistive strain gage systems for use up to 1250 K on blades and vanes in gas turbine engines under tests. The objective of these two tasks was to further improve and evaluate two static strain gage alloys identified as candidates in a previous program. Improved compositions were not found for either alloy. Further efforts on the Fe-11.9Al-10.6Cr weigth percent alloy were discontinued because of time dependent drift problems at 1250 K in air. When produced as a 6.5 micrometer thick sputtered film, the Pd-13Cr weight percent alloys is not sufficiently stable for this use in air at 1250 K and a protective overcoat system will need to be developed

    Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO

    Full text link
    We report the spontaneous formation of a plasma from a gas of cold Rydberg molecules. Double-resonant laser excitation promotes nitric oxide, cooled to 1 K in a seeded supersonic molecular beam, to single Rydberg states extending as deep as 80 cm−1^{-1} below the lowest ionization threshold. The density of excited molecules in the illuminated volume is as high as 1 x 1013^{13} cm−3^{-3}. This population evolves to produce prompt free electrons and a durable cold plasma of electrons and intact NO+^{+} ions.Comment: 4 pages (two column) 3 figures; smaller figure files, corrected typo

    Site specific spin dynamics in BaFe2As2: tuning the ground state by orbital differentiation

    Get PDF
    The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2_{2}As2_{2} single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3dd bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content interestingly occurs independently on the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations combined with the resultant particular symmetry of the Fe 3dd bands are propitious ingredients to the emergence of superconductivity in this class of materials.Comment: 6 pages, 5 figure
    • …
    corecore